Friday, March 21, 2008

Revolution in aerodynamics from whales

Pretty cool. Looking to what evolution has already done. [Link]
It seems despite man's endless ingenuity and the incredible modeling power available to inventors through CAD systems, we keep looking to nature to find ever more effective ways of doing things. Millions of years of evolution's trial and error approach have resulted in some incredibly effective designs that are ready to be incorporated into human constructions if we can only identify, understand and replicate them. The random-looking bumps on the humpback whale's flippers have just inspired a breakthrough in aerodynamic design that seems likely to dramatically increase the efficiency and performance of wind turbines, fans, flippers and even wings and airfoils. WhalePower's tubercle technology seems like nothing less than a revolution in fluid dynamics.

The humpback whale can weigh as much as 13 Hummer SUVs - and its unexpected levels of agility in the water have puzzled scientists for many years. Dr. Frank E. Fish (believe it or not) was browsing through a gift shop, when he noticed a group of small bumps on the leading edges of the fins of a humpback whale statue. Thinking it an error by the sculptor, he commented that the bumps seemed to be on the wrong side of the fin, starting an argument that would eventually lead him to discover an entirely new way of looking at the role of fins and wings in fluid dynamics.

Current theory would state that the leading edge of a fin, fan or turbine blade should be absolutely straight and smooth for best effect - a 'fact' that has been taken for granted for decades. But the more Fish studied the odd leading-edge bumps, or Tubercles, the more it became apparent that evolution's work on the fin was far ahead of man's best efforts. Airfoils fitted with tubercle bumps showed much higher lift efficiency and greater stall resistance than identical airfoils without them. Turbines fitted with tubercles to the leading edges of each blade are able to produce more power at low fluid speeds, are quieter, and perform much better in turbulent fluid streams.

No comments:

Post a Comment