Quark stars, exotic objects that have yet to be directly observed, are part of a new theory to explain some of the brightest stellar explosions recorded in the universe.
Super-luminous supernovae, which produce more than 100 times more light energy than normal supernovae and occur in about one out of every 1,000 supernovae explosions, have long baffled astrophysicists. The problem has been finding a source for all of that extra energy.
University of Calgary astrophysicists Denis Leahy and Rachid Ouyed think they have a possible source — the explosive conversion of a neutron star into a quark star.
A neutron star is a compact stellar corpse with a mass equal to about 1.5 suns packed into a space no more than 16 miles (26 km) across. Though still just theoretical as no direct evidence yet exists, a quark star is thought to be even denser, packing a similar mass into an object just 12 miles (19 km) across.
Leahy and Ouyed's computer models suggest a quark-nova explosion would account for the extra energy observed in super-luminous supernovae. The properties they found in their simulations matched up with those of three of the most luminous supernovae to date: SN2006gy, SN2005gj and SN2005ap.
"In theory, when a neutron star converts into a quark star it releases a lot of energy and it produces something that looks like a supernova explosion in terms of energetics," Leahy said during a presentation of the results today, here at a meeting of the American Astronomical Society (AAS).
No comments:
Post a Comment